Docs Cloud Redpanda Connect Components Processors gcp_vertex_ai_chat gcp_vertex_ai_chat Available in: Cloud, Self-Managed Generates responses to messages in a chat conversation, using the Vertex API AI. Common Advanced # Common configuration fields, showing default values label: "" gcp_vertex_ai_chat: project: "" # No default (required) credentials_json: "" # No default (optional) location: us-central1 # No default (optional) model: gemini-1.5-pro-001 # No default (required) prompt: "" # No default (optional) temperature: 0 # No default (optional) max_tokens: 0 # No default (optional) response_format: text # All configuration fields, showing default values label: "" gcp_vertex_ai_chat: project: "" # No default (required) credentials_json: "" # No default (optional) location: us-central1 # No default (optional) model: gemini-1.5-pro-001 # No default (required) prompt: "" # No default (optional) system_prompt: "" # No default (optional) temperature: 0 # No default (optional) max_tokens: 0 # No default (optional) response_format: text top_p: 0 # No default (optional) top_k: 0 # No default (optional) stop: [] # No default (optional) presence_penalty: 0 # No default (optional) frequency_penalty: 0 # No default (optional) This processor sends prompts to your chosen large language model (LLM) and generates text from the responses, using the Vertex AI API. For more information, see the Vertex AI documentation. Fields attachment Additional data like an image to send with the prompt to the model. The result of the mapping must be a byte array, and the content type is automatically detected. Type: string # Examples: attachment: root = this.image.decode("base64") # decode base64 encoded image credentials_json An optional field to set a Google Service Account Credentials JSON. This field contains sensitive information that usually shouldn’t be added to a configuration directly. For more information, see Manage Secrets before adding it to your configuration. Type: string frequency_penalty Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim. Type: float history Historical messages to include in the chat request. The result of the bloblang query should be an array of objects of the form of [{"role": "", "content":""}], where role is "user" or "model". Type: string location Specify the location of a fine tuned model. For base models, you can omit this field. Type: string # Examples: location: us-central1 max_tokens The maximum number of output tokens to generate per message. Type: int max_tool_calls The maximum number of sequential tool calls. Type: int Default: 10 model The name of the LLM to use. For a full list of models, see the Vertex AI Model Garden. Type: string # Examples: model: gemini-1.5-pro-001 model: gemini-1.5-flash-001 presence_penalty Positive values penalize new tokens if they appear in the text already, increasing the model’s likelihood to include new topics. Type: float project The GCP project ID to use. Type: string prompt The prompt you want to generate a response for. By default, the processor submits the entire payload as a string. This field supports interpolation functions. Type: string response_format The format of the generated response. You must also prompt the model to output the appropriate response type. Type: string Default: text Options: text, json stop[] Sets the stop sequences to use. When this pattern is encountered the LLM stops generating text and returns the final response. Type: array system_prompt The system prompt to submit to the Vertex AI LLM. This field supports interpolation functions. Type: string temperature Controls the randomness of predictions. Type: float tools[] The tools to allow the LLM to invoke. This allows building subpipelines that the LLM can choose to invoke to execute agentic-like actions. Type: object Default: [] tools[].description A description of this tool, the LLM uses this to decide if the tool should be used. Type: string tools[].name The name of this tool. Type: string tools[].parameters The parameters the LLM needs to provide to invoke this tool. Type: object tools[].parameters.properties The properties for the processor’s input data Type: object tools[].parameters.properties.description A description of this parameter. Type: string tools[].parameters.properties.enum[] Specifies that this parameter is an enum and only these specific values should be used. Type: array Default: [] tools[].parameters.properties.type The type of this parameter. Type: string tools[].parameters.required[] The required parameters for this pipeline. Type: array Default: [] tools[].processors[] The pipeline to execute when the LLM uses this tool. Type: processor top_k Enables top-k sampling (optional). Type: float top_p Enables nucleus sampling (optional). Type: float Back to top × Simple online edits For simple changes, such as fixing a typo, you can edit the content directly on GitHub. Edit on GitHub Or, open an issue to let us know about something that you want us to change. Open an issue Contribution guide For extensive content updates, or if you prefer to work locally, read our contribution guide . Was this helpful? thumb_up thumb_down group Ask in the community mail Share your feedback group_add Make a contribution 🎉 Thanks for your feedback! gcp_bigquery_select gcp_vertex_ai_embeddings